The involvement of the small heat shock protein HSPB8 in amyotrophic lateral sclerosis
2021-2025 | AFM Telethon
Alessandro Vercelli, Head of research unit
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset progressive motoneuron disease, that mostly appears as sporadic (sALS) form, with only 10% of inherited cases (familial, fALS). The fALS are due to specific gene mutations, and the most studied are those of the SOD1 genes, encoding a mutant protein that aberrantly fold, forming protein aggregates toxic to motoneurons and other affected cells. Small heat shock protein (HSP) B8 specifically removes toxic mutant SOD1 via a degradative process called chaperone-assisted selective autophagy, which is potential protective in SOD1-fALS. Here we will evaluate whether HSPB8 delays the onset or slow down the progression of disease in SOD1-ALS mice
INNOVA: Italian network of excellence for advanced diagnosis
2021-2026 | PNRR Project
Alessandro Vercelli, PI
The main objective of the INNOVA project is to strengthen the Italian research groups at the forefront of the diagnostics sector, developing an integrated approach based on molecular biomarkers and advanced imaging to develop innovative, personalized medicine for early diagnosis, prevention and drug monitoring in human diseases. Our contribution will be aimed in particular at identifying new biomarkers for the early diagnosis of neurodegenerative disorders.
Lab-on-chip for a predictive and precision medicine in Neurocovid
2022-2024 | Bando INFRA-P Regione Piemonte
Alessandro Vercelli, PI
Marina Boido, Head of research unit FCO
The COVID-19 virus, by exploiting the olfactory pathways or the autonomic nerves, can be transported to the neurons of the central nervous system, causing structural and metabolic damage. This, in turn, can lead to a range of deficits in patients affected by COVID-19, including anosmia, ageusia, epileptic seizures, stroke, and long-term mental and cognitive decline known as “brain fog.”
The aim of the project is to develop an analytical platform for studying, at the micro/nanoscale level, the responses of human neurons, with the goal of identifying key signals that can provide direct feedback on the patient’s health status. To this end, a microfluidic device will be developed to enable the manipulation, isolation, and concentration of small sample volumes containing the analytes of interest.
Uncovering the mechanism of action and synergistic potential of a SMA repositioned therapy
2022-2025 | SMA Europe
Marina Boido, PI
The “drug repositioning” approach aims to evaluate an alternative use of drugs already in clinical use for a certain pathology, revealing their efficacy for other diseases. In the field of Spinal Muscular Atrophy, following the screening of thousands of molecules in Drosophila, in collaboration with the groups of R. Artero (Univ. Valencia) and C. Martinat (INSERM, Paris), we identified GT5 (code name) as capable of increasing the production of SMN, the protein missing in SMA. The aim of the project is to test its efficacy on murine and cellular models, identify the minimum effective dose, and perform an RNA-sequencing analysis to better understand its mechanism of action.
A combinatorial pharmacotherapeutic approach to counteract Spinal Muscular Atrophy
2022-2025 | AFM Telethon
Marina Boido, Head of research unit
In collaboration with Dr. Elia di Schiavi (CNR Naples) and Dr. Smeriglio (INSERM, Institut de Myologie, Paris), the project aims to identify potentially repositionable drugs for Spinal Muscular Atrophy, after the screening of several drug libraries on the C. elegans model. The most promising ones will be tested in vitro and in vivo, also in combination with the SMN-dependent drugs currently available to patients.
Development and testing of new molecules for the experimental treatment of sarcopenia
2022-2025 | Flagship project INNDIANA, Spoke 5 “Industry for Health and Silver Economy”, Progetto PNRR NODES
Marina Boido, Head of research unit
Sarcopenia determines progressive loss of skeletal muscle mass and strength in the elderly, affecting about 5 to 10 % of persons over 65 years of age. Current treatments (based on the inhibition of the myostatin system) induce a remarkable hypertrophy, but fail to assure muscle performance beyond momentary effort. Therefore, the aim of our project (in collaboration with Pharmafox Therapeutics) is developing and testing innovative compounds that have the potential of providing additional innervation to the hypertrophic muscles and can assure an increased endurance in motor tasks.
Evaluation of the effect of leriglitazone on brain iron deposits in a murine model of Alzheimer’s disease
2023-2026 | Minoryx Therapeutics S.L.
Serena Stanga, PI
Alzheimer’s disease (AD) is a progressive neurological disorder mainly associated with aging and one of the most severe forms of dementia with a higher prevalence in older adults. However, no effective treatment to fully restore the health condition of the patients has been yet found. This is why novel drugs that might help to prevent the disease before the symptoms are fully present is a major goal in the field. In this study, we evaluate novel treatments for AD therapy.
D34Health: Digital Driven Diagnostics, prognostics and therapeutics for sustainable Health care
2023-2026 | Piano Nazionale per gli investimenti Complementari (PNC) Codice progetto MUR: PNC0000001 – CUP ENTE: B53C22006110001.
Alessandro Vercelli, PI
The goal of the D34HEALTH project is to provide high-tech solutions that can impact the management of systemic and central nervous system oncology and inflammatory diseases. D34HEALTH aims to transform and advance current methods of diagnosis, monitoring, and therapy by facilitating the application of precision medicine approaches through the development of digital and biological twins. D34HEALTH aims to develop and deploy innovative, non-invasive technologies and solutions based on the analysis of digital and digitized health data.
MULTIMALZ: A multiscale imaging approach to study early alterations in an Alzheimer cerebral organoid
2024-2025 | Progetto Partenariato Esteso “MNESYS”, Spoke 2, Università degli Studi della Campania
Marina Boido, PI
Within the MULTIMALZ project, we aim to exploit human iPSCs-derived cerebral organoids (from healthy controls and Alzheimer patients), to perform a multimodal correlative imaging on different spatial (tissue, cellular, ultrastructural) and temporal scales. This will allow us to detect early alterations leading to the disease, with the aim to identify potential new biomarkers.
Understanding and targeting Chemotherapy-related neurotoxicity
2024-2026 | MUR-Next Generation EU-PRIN2022
Alessandro Vercelli, Head of research unit
In collaboration with the group of Prof. Cavaletti (University of Milano-Bicocca), the project aims to investigate the pathophysiology of chemotherapy-induced cognitive impairment, using different experimental approaches. In particular, morphological and functional changes in the cortex and other brain regions will be investigated, in order to elucidate the mechanisms behind these alterations and identify potential therapeutic targets to mitigate neurotoxic effects.
A 3D bioprinted spinal cord model to reach functional meaningful and clinically translatable regeneration
2024-2026 | MUR-Next Generation EU-PRIN2022
Marina Boido, Head of research unit
The project (in collaboration with Prof. Tonda-Turo, Rigoni and Aiello) aims to develop in vitro, by means of 3D bioprinting, a complex three-dimensional model of the spinal cord, populated by different types of neurons and glial cells. This platform will be useful to study how nerve fibers degenerate in case of injury and to test new regenerative approaches.
Targeting mACONITASE and KIF5A to rescue mitochondrial mobility and function for the treatment of motor neuron diseases
2024-2026 | MUR-Next Generation EU-PRIN2022
Serena Stanga, PI
The project aims at understanding the mechanisms underpinning mitochondria altered function and trafficking along motor neurons in Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS) diseases, at discovering new targets and new potential therapeutic approaches against neurodegeneration.
DAISI&RON: Degli Anziani In Salute con Intravides e Robot Nurse
2024-2026 | Iniziative di ricerca per tecnologie e percorsi innovativi in ambito Sanitario e Assistenziale Progetto PNC0000003 – Anthem – AdvaNced
Alessandro Vercelli, PI
The DAISI&RON project aims to demonstrate how the use of robots and other advanced, low-cost, adaptive technologies can support the elderly in active and healthy aging at home or in residential care facilities.
The proposed healthy and active aging activities will be available in an open, multi-platform environment, going to evaluate the best combination depending mainly on the acceptance and usability of the technologies integrated in the DAISI&RON project. Robots equipped with advanced communication systems to ensure proper human-robot interaction, virtual reality technologies, and sensors available in the elderly person’s home environment will be the core of the system designed and integrated into DAISI&RON.
REACT: Rebalancing the epitranscriptional landscape as an advanced therapy in SMA
2025-2026 | CURE SMA
Marina Boido, Head of research unit
In collaboration with Dr. Rico Schieweck (Univ, Luxembourg) and Dr. Gabriella Viero (CNR, Trento), our research project aims to elucidate the impact of SMN on RNA methylation to pave the way for novel combinatorial therapies.
PAST
Cross-talk between intrinsic and extrinsic mechanism in importin alpha 3 knock-out mice. Investigating the neurite outgrowth in embryonic neurons and the control gene regulation in importin alpha3 knock-out mice.
2022 – 2025 | Rita Levi Montalcini Fellowship, MUR, Italy
Letizia Marvaldi, head of research unit
Importins are proteins that shuttle information from the cytoplasm to the nucleus (Rishal and Fainzilber 2014). Importins are the gatekeepers of the nucleus, and as such can temporally coordinate transcriptional waves, for example as reported in importin alpha 3 knockout mice (Yousuf and Price 2020). Recently, we discovered that importins can control different functions, as importin alpha5 regulates anxiety behavior (Panayotis et al. 2018) while importin alpha3 controls acute and neuropathic pain (Marvaldi et al. 2020). We believe that there are different transcriptional programs in DRGs neurons that are responsible for distinct phases of neuropathic pain. Importin alpha3 knockout mice felt less acute and chronic pain due to a missed transport of c-FOS into the nucleus. After mapping the transcriptional changes in nociceptors induced by the loss of importin alpha 3, we were even able to mimic the analgesic effects of importin alpha3 loss with Sulmazole and Sulfamethizole (Marvaldi et al. 2020).
- Neuropathic pain is caused by miswiring and abnormal organ targeting where excessive branching lead to more pain, we want to exploit if those phenotype is also due to a better regeneration and re-innervation of the target tissue. We will thoroughly mine for the transcriptional networks and key regulators that carry the signature of axonal growth. Finally, we will compare our genes of interest with human neuropathic pain patients’ dataset to verify if these genes exert similar functions in humans. At the end we will look to potent drugs and therapeutic compounds.
- We will discover the role of importin alpha 3 during development. We will determine the interaction of intrinsic factors (i.e.: importins) and extrinsic signals (i.e.: neurotrophin signaling) in patterning the phenotype of sensory neurons during development.
Iron arm with dementia: iron and mitochondria as new targets against Alzheimer’s disease
2022-2024 | Fondazione Cassa di Risparmio di Torino (CRT)
Serena Stanga, head of research unit
Because of the increase ageing of the population, neurodegenerative diseases are dramatically incrementing; indeed, ageing is the main risk factor for dementia. The project aims to: i) unreveal new neurobiological mechanisms underpinning neurodegenreation, ii) identify new biomarkers able to predict cognitive decline and iii) new targtes for the development of drugs for Alzheimer’s disease cure. We will study the mechanisms related to iron metabolism in the brain and specifically in the cerebral cortex and in the hippocampus, areas deeply touched by neurodegenerative processes.
3D bio-printing: neurobiology and engineering together to study and treat spinal cord injuries
2021-2023 | Fondazione CRT
Marina Boido, PI
co-PI Chiara Tonda-Turo (Politecnico of Torino)
In Piedmont, there are 4500 para- and tetraplegic patients. It is disabling disease, which completely upsets the life of patients. The spinal cord is the part of the central nervous system that connects the brain with the periphery: if due to an injury the spinal cord nerve fibers are damaged, this communication is interrupted and the results are dramatic (paralysis, loss of sensitivity, altered physiological functions). To date, there is no cure and patients are wheelchair-bound or immobilized in a bed, depending on the severity of the damage.
In this scenario, our ambitious project arises from the close collaboration between neurobiologists and engineers: we intend to exploit 3D bio-printing to build a three-dimensional cellular model of the spinal cord. This will allow us to replicate the anatomy of the spinal cord (healthy and injured) in vitro, letting us to study if and how nerve fibers degenerate and/or regenerate and to preliminarily test promising therapeutic strategies (such as the use of mesenchymal stem cells). Therefore, the project will have the dual purpose of creating a functional 3D cellular model of the spinal cord that will allowa first screening of drugs and therapies, and also will permits to reduce the use of experimental animals.
The role of SMN protein in translation: implications for Spinal Muscular Atrophy
2019-2022 | Fondazione Telethon
Marina Boido, head of research unit
Research network: coordinator Gabriella Viero, CNR, Trento
The aim of the project is to understand how alterations of SMN expression can affect translation (i.e. protein synthesis) in case of SMA. The study will be important not only to better understand the role of SMN (whose functions are only partially known) and the pathogenesis of the disease, but also to design innovative effective therapies to counteract this pathology.
Mental Health and urban Green/Blue
2018-2022 | MIUR: Dipartimenti di Eccellenza
Head of research unit: Alessandro Vercelli
Among the non-pharmacological methods for the prevention and treatment of diseases, the importance of man-nature interaction is increasingly emerging. Being in nature has a positive impact on blood pressure, cholesterol levels, stress reduction and can also stimulate the feeling of well-being and attention. Some of these positive effects are probably due to molecules released by plants in green areas: among these, terpenes – low molecular weight secondary lipophilic plant metabolites – are capable of influencing a wide range of biological activities in various models of human diseases.
In this project we evaluate how living in an urban environment close to green areas, and their frequentation, can reduce the depressive state and reduce the need for pharmacological drug consumption in depressed patients.
In collaboration with the Psychiatric Clinic (AziendaOspedalieraUniversitariaCittàdella Salute e dellaScienza di Torino – Presidio Molinette) directed by Prof. Rocca , we use a multimodal approach: we study the variations of biohumoral and epigenetic markers of inflammation and stress response, before and after chronic exposure to the “green”. With fMRI we evaluate the effects of urban greenery exposure on brain connectivity.
At the same time, we study the biological effect of the exposure to urban greenery on the nervous system, to identify the phyto-molecules mediating these positive effects and their mechanisms of action in cell cultures.
The “forest bathing” and nature immersion could prove to be an easy-to-follow therapeutic indication, complementary to traditional drug therapies.
Development of combinatorial therapies for SMA
2019-2020 | AFM Telethon
Marina Boido, head of research unit
Research network: coordinator Ruben Artero, University of Valencia, Spagna; Cécile Martinat, I-STEM, Corbeil-Essonnes, France
In this project we will select and test in vitro and in vivo some FDA-approved drugs (alone or in combination), to provide the most efficient “cocktail” of therapeutics able to systemically increase SMN protein levels. Indeed we aim for discovery of an orally administered drug which will not only increase the SMN protein levels in motoneurons, but also in other affected tissues.
Mitochondria in Spinal Muscular Atrophy: dysfunctions and mitophagy
2018-2020 | Fondazione CRT – Richieste Ordinarie 2017
Marina Boido
The aim of the project is to deeply study mitochondria dysfunction and mitophagy in SMA. We intend to understand how the pathogenesis of SMA is linked to mitochondria alterations. The in-depth analysis of these aspects will contribute both to shed light on the complex mechanisms that cause SMA, but also to identify new therapeutic targets.
Identification of new druggable targets and potential therapeutic compounds for Spinal Muscular Atrophy, using a C.elegans model of neurodegeneration
2017-2020 | Fondazione Telethon
Alessandro Vercelli, head of research unit
Research network: coordinator Elia Di Schiavi, CNR, Napoli
The project will help us to identify new genetic partners interacting with SMN and to understand how they influence smn-1 dependent phenotypes; we also intend to identify new molecules able to prevent neurodegeneration caused by the lack of SMN.
My-AHA – My Active and Healthy Ageing
January 2016-2019 | Horizon 2020
Coordinator Alessandro Vercelli, NICO – University of Torino
The consortium is made of: Istituto Mario Boella (Torino), the Universities of Siegen and Koln (D), Loughborough (GB), Instituto de Biomecanica Valencia (E), Fraunhofer Portugal, Johanniter Austerreich (A), Kasa Solution (D), VitalinQ (N), GESMED (E). To the consortium participate as Extra-EU partners Seul National University (South Korea), Tohoku University (Japan), University of the Sunshine Coast (Australia), and the JIN company (Japan).
Aims and Relevance
The main aim of my-AHA is to reduce frailty risk by improving physical activity and cognitive function, psychological state, social resources, nutrition, sleep and overall well-being. It will empower older citizens to better manage their own health, resulting in healthcare cost savings. my-AHA will use state-of-the-art analytical concepts to provide new ways of health monitoring and disease prevention through individualized profiling and personalized recommendations, feedback and support.
Approach
An ICT-based platform will detect defined risks in the frailty domains early and accurately via non-stigmatising embedded sensors and data readily available in the daily living environment of older adults. When risk is detected, my-AHA will provide targeted ICT-based interventions with a scientific evidence base of efficacy, including vetted offerings from established providers of medical and AHA support. These interventions will follow an integrated approach to motivate users to participate in exercise, cognitively stimulating games and social networking to achieve long-term behavioural change, sustained by continued end user engagement with my-AHA.
more information > www.activeageing.unito.it
Neurostemcellrepair – European stem cell consortium for neural cell replacement, reprogramming and functional brain repair
2013-2017 | FP7 European Union
E Fucà, A Buffo, D Carulli participating in the research unit headed by A Vercelli
Research network: Elena Cattaneo, University of Milan, coordinator, Ernest Arenas, Karoliska Institute, deputy coordinator, Parmar Malin, University of Lund, Stephen Dunnet, University of Cardiff, Oliver Brustle, University of Bonn, Roger Barker, University of Cambridge, Charles ffrench-Constant, University of Edimburgh, Andreas Bosio, Milteny, Ida Biunno, Isenet).
This project aims at developing new strategies for stem cell therapies in Hungtington and Parkinson diseases, including acquisition of specific neuronal identities and functional integration in the recipient brain. We contribute our expertise in rodent models of Hungtington disease, and analyse how specific training activities can ameliorate differentiation and integration of grafted cells.
more information > www.neurostemcellrepair.org
Motor neuron death in Spinal Muscular Atrophy (SMA): new animal models and innovative therapeutic strategies
2011-2015 | Italian Ministry of Health RF-2009-1475235
The proposed research project will aggregate: i) the Molecular Neuroanatomy and Pathogenesis Unit (G. Battaglia), at the IRCCS Foundation Neurological Institute “C. Besta” in Milano; ii) the Molecular and Computational Biology lab (F. Di Cunto) at the Molecular Biotechnology Center in Torino; iii) the C.elegans Neurobiology lab (E. Di Schiavi) at the Institute of Genetics and Biophysics of the CNR in Napoli; and iv) the lab of Developmental Neuroanatomy (A. Vercelli) at the NICO.
Spinal Muscular Atrophy or SMA is a severe autosomal recessive disease characterized by selective motor neuron degeneration. SMA is the leading genetic cause of infant mortality, with an incidence of 1:10.000 live births and an estimated carrier frequency of 1:35. The SMA determining gene was discovered in 1995 and termed survival motor neuron (SMN) gene.
The main protein product of the SMN1 gene, the FL-SMN protein, has its primary and most important role in spliceosomal assembly and pre-mRNAs maturation. However, how reduced FL-SMN levels lead to selective degeneration of motor neurons in SMA still remains elusive. Accordingly, no effective therapy is up to now available for affected children.
A novel, truncated isoform of the FL-SMN protein, a-SMN or axonal SMN, with selective expression in the axons of spinal cord motor neurons, has been recently reported by our group. We intend to verify the in vivo function and therapeutic properties of the FL-SMN and a-SMN proteins in both invertebrate and mammalian experimental settings.
Generation of authentic human striatal neurons from pluripotent stem cells for transplantation in Huntington’s disease
2013-January 2016 | PRIN – Italian Ministry of University and Research
Coordinator: Elena Cattaneo; Head of local research unit: Alessandro Vercelli
Research Network: Biella Gerardo Rosario, University of Pavia; Biunno Ida, Cnr; Moresco Rosa Maria, University Milano-Bicocca
The anatomy of the striatum in mammals is characterized by medium-sized spiny GABAergic projection neurons and by 5% interneurons. On immunohistochemical and histochemical grounds, the striatum can be subdivided in lightly labeled striosomes and an intensely labeled matrix, in which neurons are differentially organized. The striatum is part of neural circuits which play a role in motor behavior and in the mechanisms of reward. The anatomical organization is completely disrupted in Huntington’s disease, where projection neurons degenerate massively, causing a secondary neuronal death in the substantia nigra, to which the striatum is strongly interconnected.
The aim of the consortium is to explore the potential for a specific set of stem cells, human ventral striatal progenitors, derived from embryonic stem cells, to replace lost projection neurons in a rat experimental model of Huntington’s disease.
In the frame of this project, UNITO will be responsible for studying the anatomical integration of stem cells in the striatum. The results obtained by our UNIT will be compared with those obtained in the same animals on motor behavior in order to correlate improvement in motor performance with the proper differentiation of stem cells and their integration into neural circuits.
Use of biomimetic scaffolds and stem cells to support the regeneration of the injured spinal cord
2014-2016 | Fondazione CRT
Marina Boido, NICO co-PI with Gianluca Ciardelli e Chiara Tonda-Turo, Politecnico di Torino
The project derives from a collaboration between UNITO and POLITO. In the project we employ hydrogels (biomimetic polyurethanes, water-soluble and heat-sensitive) in which stem cells (embryonic or adult) are encapsulated. The scaffolds are tested in vitro, in order to assess their ability to host the cells.
Moreover we aim to inject scaffolds and stem cells in vivo, in a mouse model of spinal cord contusion. To evaluate the efficacy of the treatment, we intend to study sensorimotor performance of animals, the survival/integration of cells in the host tissue, and the expression of molecules involved in the regeneration and neuroinflammation.










