NICO NeuroWebinar & Seminar

Condividi su
Data dell'evento: dal 06/06/2023 al 06/06/2023

NeuroWebinar & Seminar

1 appointment per week, on Friday at 2.00 pm

**Hybrid seminar: both in presence (max 25 people in Seminar room) and on webex

Tuesday 6/6/23 h. 2:00 pm -  Hybrid Seminar
  Marco Cambiaghi, University of Verona - Dep. of Neurosciences, Biomedicine and Movement Sciences

Electrified brains: from the torpedo fish to transcranial direct current stimulation

The idea of modulating brain activity with a non-invasive approach has always been one of the major goals of neurophysiology and to a broad extent, of modern neurology and psychiatry, since the associated disorders are often the consequences of dynamic plastic changes of the neural networks. Well before the discovery of the physical phenomenon, electricity was used as a therapeutical tool but only the last few decades saw the development of effective non-invasive neuromodulatory techniques. Among them, transcranial direct current stimulation (tDCS) has recently emerged as a safe and economic tool to guide neuroplasticity and modulate cortical function by tonic stimulation with weak direct currents. Despite its wide use in human studies, some underlying mechanisms of action have been clarified only recently and the vast majority is still to be elucidated. In recent years, we are focusing on the study of indirect effects of tDCS and the influence of brain state during stimulation, in different preclinical models in both physiological and pathological conditions. In particular, we explored prefrontal tDCS influence on dorsal raphe activity and, in the motor cortex, the effects of combining tDCS with physical activity.
Host: Enrica Boda | webex link

Friday 9/6/23 h. 2:00 pm -  Hybrid Seminar
Marta Valenza, Department of Biosciences, University of Milan

Astrocyte-neuron interplay in the cholesterol dysfunction in Huntington’s disease brain: from the mechanism to therapeutics

In the adult brain, neurons require local cholesterol production, which is supplied by astrocytes. Cholesterol biosynthesis is severely reduced in the brain of Huntington’s disease (HD), a genetic adult-onset neurodegenerative disease characterized by synaptic dysfunction and motor and cognitive defects. The defect occurs inastrocytes with detrimental consequences on HD neurons’ activities. The underlying molecular mechanism is a reduced activity of SREBP2, the transcription factor that activates the expression of many genes involved in cholesterol synthesis.

In the last years, different in vivo strategies were developed to counteract cholesterol dysfunction in HD mouse models either supplying exogenous cholesterol with brain-permeable nanoparticles or enhancing endogenous cholesterol within the HD brain. I will present an overview of thesecholesterol-based strategies and their translational potential. Then, I will focus on the gene therapy approach to force endogenous cholesterol biosynthesis in the striatal astrocytes of HD miceto highlight the relevance of the astrocyte-neuron interplay in HD pathogenesis in vivo.
Host: Marina Boido | webex link


Friday 19/5/23 h. 2:00 pm Hybrid Seminar
  Silvia Gancheva Marinova e Antoaneta Georgieva (University of Varna, Bulgaria)

Silvia Gancheva Marinova, MD, PhD
Pharmacologically induced changes in osteocalcin levels – metabolic and central nervous system effects in healthy and metabolic rats
Osteocalcin is a bone-derived protein involved in the regulation of energy metabolism and CNS functions in rodents. Its serum concentrations can be modified pharmacologically in opposite directions through administration ofvitamin K antagonists and bisphosphonates. The current presentation describes the resulting changes in energy metabolism and brain functions.

Antoaneta Georgieva, MD, PhD
Effects of Aroniamelanocarpa fruit juice and its component chlorogenic acid on the ovariectomy-induced behavioral changes in rats
Presentation of our research on the behavioral changes in a rat model of ovariectomy-induced estrogen deficit and the effects of a 10-week treatment with Aroniamelanocarpafruit juice in two different doses or chlorogenic acid.
Host: Ilaria Bertocchi/Carola Eva

Friday 21/4/23 h. 2:00 pm Hybrid Seminar
  Alessandro Ferrarini, Account Manager Starlab
The Sustainable Laboratory
It is universally acknowledged that the Pharmaceutical Industry and Scientific Research sector are highly polluting, in terms of CO2 emissions, plastic waste and water usage. A study conducted in2015 estimated that labs worldwide consume around 5 million tons of plastic and that a research lab requires 5 to 10 times the amount of energy used in an office of the same size.
The current situation is alarming and rapidly deteriorating. The Pharma and Life Science Sector has one of the largest carbon footprints globally, estimated to be even higher than the automotive industry. While the Pharmaceutical and healthcare sectors are clearly the biggest contributors, scientific research also play a role in the overall result, with plastic waste and energy consumption being the most significant factors.
Starlab mission is to continually look for intelligent, climate-friendly products and processes. We try to raise awareness among scientists and present possible solutions: The new TipONE generation saves up to 40% in plastic and the smart gloves packaging optimizes space and transportation. Starlab is constantly thinking about sustainability, with the ultimate goal to become a Green Company in every aspect. So, Let’s get green Together.
Host: Serena Stanga 

Friday 7/4/23 h. 2:00 pm  - Webinar
  Alain Prochiantz, Emeritus Professor at College de France and Chief Scientific Officer BrainEver SAS
OTX2 and EN1 homeoprotein transduction, from physiopathology to therapeutic strategies
Intercellular transfer has now been demonstrated for 150 homeoprotein transcription factors. However, the physiological functions served by this novel signaling pathways have only been studied for a handful of them, including OTX2 and ENGRAILED. The conference will focus on the role of OTX2 and ENGRAILED-1 signaling in the regulation of cerebral cortex plasticity and spinal cord a-Motoneuron physiology, respectively. The consequences of the latter recent findings in the development of original therapeutic strategies in mood disorders and Amyotrophic Lateral Sclerosis will be discussed.
Host: Serena Stanga 

Friday 24/3/23 h. 2:00 pm  - Hybrid Seminar
  Fiorenza Stagni, Università degli Studi di Bologna
Potential of early pharmacotherapies for the improvement of intellectual disability in Down syndrome: lesson from the Ts65Dn mouse model
Down syndrome (DS) is a relatively high-incidence genetic condition caused by the triplication of chromosome 21. Gene triplication may compromise different body functions but intellectual disability represents the unavoidable hallmark and the most invalidating aspect of this pathology. Intellectual disability is mainly attributable to neurogenesis and dendritogenesis alterations that can be traced back to fetal life stages. Although the progressive improvement in medical care has led to a notable increase in life expectancy for people with DS, there are currently no effective therapies for intellectual disability in DS. Since neurodevelopmental defects are present starting from fetal life stages, early pharmacological interventions are likely to represent a good strategy to improve brain development in DS. With this idea in mind, our research group has examined the efficacy of different pharmacotherapies administered during the prenatal or early postnatal period in the Ts65Dn mouse, a model that recapitulates many anatomical and functional alterations of DS.This talk will describe and discuss the most suitable time windows for treatment and some of the attempted pharmacotherapies targeted to pathways that are known to be deranged in DS, that have proved to be effective in restoring trisomy-linked neurodevelopmental defects and cognitive performance in the Ts65Dn mouse model.In view of the good translational impact of some of these tested therapies, our preclinical findings may open the way for clinical trials in individuals with DS, thereby improving their life conditions.
Host: Francesca Montarolo 

Wednesday 22/3/23 h. 2:00 pm  - Hybrid Seminar
  Christel Genoud, Electron Microscopy Facility, University of Lausanne
The benefits and challenges offered by visualization of large volume with light and scanning Electron Microscopy
In recent years, the field of microscopy has advanced significantly, allowing for the visualization of larger biological structures in 3 dimensions at ever-increasing resolutions. In cellular electron microscopy, this evolution is allowed by the technological developments in volume EM and Correlative multi-modal imaging. These techniques offer a wealth of benefits, including the ability to visualize large volumes of tissue with remarkable detail as well as target rare events in large volumes. However, there are also significant challenges associated with these techniques, including sample preparation, data acquisition, and image processing.
In this talk, we will explore some of the benefits and challenges of these approaches, with a focus on their applications in biological research. We will discuss recent advances in these techniques, including the use of machine learning to aid in data analysis, and highlight some projects that have been made using these methods. Ultimately, we will demonstrate that while these techniques are not without their challenges, they offer tremendous potential for advancing our understanding of the biological world.
Host: Corrado Calì 

Friday 17/3/23 h. 2:00 pm  - Webinar 
  Elena Choleris, Department of Psychology and Neuroscience Program, University of Guelph, Ontario, Canada
Neuroendocrinology of social cognition in female and male mice 
Recent findings demonstrate rapid hormonal facilitation of social cognition in various brain regions of female a male mice. In females, in the Dorsal Hippocampus estradiol’s rapid facilitating effects are broad across multiple (but not all tested) learning tasks. In the Paraventricular Nucleus of the Hypothalamus (PVN), Medial Amygdala (MeA) and Medial Prefrontal Cortex, instead, the effects appear specific to social cognition, other types of learning tasks being unaffected. In the PVN and MeA those effects depend upon the action of MeA oxytocin receptors and do not extend to males. In males, in the Bed Nucleus of the Stria Terminalis, estradiol, testosterone and dihydrotestosterone all rapidly facilitate social recognition while inversely affecting object recognition, and those effects depend upon Arginine Vasopressin receptors V1aR in the Lateral Septum. Together, these investigations are highlighting the rapid hormonal regulation of brain networks of females and males subserving social cognition, further advancing our understanding of hormonal regulation of the social brain.
Host: Gruppo Panzica Gotti 

Thursday 9/3/23 h. 2:00 pm  Hybrid seminar 
  Philip Greulich, University of Southampton
Mathematical modelling in cell biology: why and when is it useful?
Mathematical and computational modelling has become an increasingly popular tool in the biological sciences. Yet, often modelling is being employed without gaining much value from it, or in ways where machine learning approaches would be superior. Sadly, wrong use of model fitting can also lead to plainly wrong results. In this talk, I wish to outline some contemporary uses of mathematical modelling in (cell) biology and explain which modelling approaches are generally fruitful and can enrich biological research, in ways that are not achievable by plain experimental approaches.
I will exemplify this on some research projects about clonal dynamics in developing tissue -- mouse mammary gland during pregnancy and microglia in the developing brain -- where experimental data and mathematical modelling were successfully combined to drive the discovery of stem cell fate choice patterns. These examples will show where the pitfalls of mathematical modelling lie and how to circumnavigate them to achieve scientifically sound outcomes that go beyond the reaches of experimental research.
Host: Federico Luzzati 

Friday 10/3/23 h. 2:00 pm  - Hybrid seminar 
  Paolo Giacobini, INSERM Research Director, Lille Neuroscience & Cognition 
Development and Plasticity of the Neuroendocrine Brain
The scent-sational role of GnRH neurons 
Gonadotropin-releasing hormones (GnRH) neurons are the master regulators of fertility in vertebrates. Hypothalamic GnRH-secreting neurons release their hormone through the median eminence (ME) into the hypophyseal portal system to stimulate the production and release of pituitary gonadotropins, which regulate the development and function of the gonads. To ensure reproductive success, GnRH neurons have to process and integrate various internal and external cues to elicit the most adapted neuroendocrine responses. 
We recently identified, both in mice and humans, a sub-population of extra-hypothalamic GnRH neurons located in the olfactory bulb (OB), whose role has never been investigated. Combining mouse genetics with Cre-dependent viral tracing approaches, and 3D-imaging of whole-mouse heads, we revealed that OB-GnRH neurons project neurites contacting the vomeronasal organ, the chemosensory system that perceives and processes stimuli related to social and reproductive behaviors in many species of vertebrates. In addition, OB-GnRH neurons send long projections to the hypothalamic areas involved in the control of gonadotropin release. 
Bidirectional chemogenetic neuromodulation combined with behavioral testing, electrophysiological recording and two-photon in vivocalcium-imaging, demonstrated a novel role for this extra-hypothalamic GnRH neuronal population as a central regulatory hub linking pheromonal stimulation with the neuroendocrine response regulating reproduction and mating behavior.
Host: Silvia De Marchis

Friday 3/3/23 h. 2:00 pm  - Webinar 
Wenhui Huang, Universität des Saarlandes Homburg, Germany
Adenosine control of glial fate and functions
Extracellular adenosine is mainly formed from the sequential ATP metabolism by a series of hydrolases, in which ecto-5’-nucleotidase (Nt5e, also known as CD73) performs the last step converting AMP to adenosine. Under cellular stress conditions, such as inflammation, hypoxia, etc., extracellular adenosine can be drastically increased. In the CNS, adenosine serves as a neuromodulator by triggering various G-protein-coupled adenosine receptors (ARs) of the A1, A2a, A2b and A3 subtypes among which A1 receptors (A1ARs), coupled to Gi/o proteins, are the most abundant subtype. A1ARs are widely expressed in the brain, including neurons, microglia, astrocytes, and oligodendrocyte (OL) lineage cells.
Transcriptomic studies revealed the highest A1AR expression levels in OL lineage cells and astrocytes, indicating an important role of adenosine signaling in regulating the fate and functions of these glial cells. In my talk, I will introduce our ongoing work studying the in vivo functions of adenosine signaling in glial cells by analysing cell type-specific A1AR deficient mice in a cuprizone-induced de-/remyelination model as well as in a peripheral lipopolysaccharide (LPS) injection model.
Host: Enrica Boda 

Friday 10/2/23 h. 2:00 pm  - Hybrid seminar 
Samuele Negro, Department of Biomedical Sciences, University of Padova IT
CXCR4: a new target to boost peripheral nerve regeneration
The peripheral nervous system (PNS) is the part of the nervous system outside the brain and spinal cord that relays signals between the central nervous system (CNS) and the rest of the body. It is composed mainly of: 1) neuronal cells, in particular a combination of motor, sensory and autonomic neurons; 2) Schwann cells (SCs), glial cells which ensheaths nerves in a layer of myelin and provide trophic support; 3) other non-neuronal cells such as fibroblast and satellite cells. Despite the PNS has an intrinsic ability for repair and regeneration to a certain extent, differently from the CNS, peripheral nerve injuries represent an important clinical issue with insufficient or unsatisfactory therapeutic approaches.
The process of nerve regeneration is complex, involving many factors concerning to the neuron and the cellular environment, and is still far from being understood. Our research group has contributed to shedding light on some of the mechanisms that govern PNS regeneration. In particular, we have recently discovered that the molecular axis orchestrated by the chemokine CXCL12α and its receptor CXCR4 is a novel signalling pathway that powerfully stimulates peripheral nerve regeneration.
Host: Roberta Schellino

Friday 27/1/23 h. 2:00 pm  - Hybrid seminar 
Indrek Koppel, Tallinn University of Technology, Estonia
Cell type-specific omics of neurons and glia
For studying transcriptomes in a cell type-specific manner researchers can choose between single-cell strategies and affinity purification of ribosome-associated mRNA. Single cell proteomics is in very early stages of development, but cell-specific labeling and affinity purification of proteins has been achieved using genetic tools, ensuring incorporation of affinity tags in cell types of interest. In this talk, I will discuss currently available tools in cell type-specific proteomics and introduce a method that leverages a puromycin inactivating enzyme for achieving cell type specificity. I will describe the use of this strategy for studying protein synthesis in co-cultures of rat cortex cells. In addition, I will talk about our efforts in studying neuron-astrocyte communication using tools for cell-specific activation and translatomics. 
Host: Letizia Marvali | 

Friday 20/1/23 h. 2:00 pm  - Hybrid seminar 
Tommaso Pizzorusso, BIO@SNS laboratory, Scuola Normale Superiore of Pisa; Institute of Neuroscience CNR, Pisa
Genetic and environmental regulation of visual cortical plasticity
The visual cortex is characterized by developmental periods of high plasticity designated critical periods. However, environmental factors are able to modulate plasticity levels also in adult animals. Indeed, exposing animals to an enriched environment (EE) has dramatic effects on brain structure, function, and plasticity also in adult animals. The poorly known ‘‘EE-derived signals’’ mediating the EE effects are thought to be generated within the central nervous system. In the talk I will report data about intrinsic regulators of cortical plasticity and the interaction with signals originating from the periphery that can be changed by life style. The role of the gut microbiota and the effect of diet will be discussed
Host: Serena Bovetti 


06 giugno 2023

NICO NeuroWebinar & Seminar

1 appointment per week, on Friday at 2.00 pm

Guarda il video

GiovedìScienza racconta la ricerca al NICO

Vivere per sempre. 
Una popolazione sempre più longeva, i suoi problemi e le risposte della ricerca

Hai perso la diretta? Guarda ora il video di GiovedìScienza al NICO: una puntata in diretta dai nostri laboratori dedicata alla ricerca sull'invecchiamento.

3 marzo 2022