Amerigo Pagoto, Dep. of Molecular Biotechnology and Health Sciences, University of Turin

Condividi su
Data dell'evento: 23/11/2018

Friday, 23rd November – h 2:00 p.m.
Seminars Room, NICO

Amerigo Pagoto
PostDoc, Department of Molecular Biotechnology and Health Sciences, University of Turin

Imaging applications in CNS diseases

One of the most effective ways to have clear in vivo information about brain pathological conditions is to visualize them. Nowadays, an array of imaging techniques is available and, thanks to their
intrinsic features, each of them is suitable for different applications.
MRI (Magnetic Resonance Imaging), characterized by a great spatial resolution and no limits in tissue penetration, allows to acquire highly resolved brain images without any interference by the
skull. However, one of the main drawbacks of the technique is the low sensitivity: a possible way to overcome the obstacle is to design highly sensitive (and specific) imaging probes. Following the
idea to target “readily available” vascular molecular proteins associated with neuroinflammation, anti-VCAM phospholipidic micelles containing Gd3+ (a positive contrast agent for MRI) were

Moreover, exploiting the same phospholipidic platform, anti-APOE micelles, able to bind amyloid plaques in AD (Alzheimer Diseases), were designed and tested.
OI (Optical Imaging), by contrast to MRI, is characterized by a very limited tissue penetration but is endowed with high sensitivity. Exploiting the technique it is possible, using an appropriate optical
probe, to localize even small lesions. Unfortunately, OI is suitable just for superficial applications, because the light is scattered and absorbed into the tissues. This is the reason why the optical
applications (and probes) are spreading out for surgical interventions, where the tissue is “visually available”.

Therefore, I will discuss about a project involving optical/surgical probes for the precise detection of glioblastoma multiforme.
During the seminar I will mainly give you an overview of the main neuro-applications I worked on during my Ph.D., together with a brief introduction to novel and ongoing projects.

Host: Silvia De Marchis


16 febbraio 2019

Torino - 10th International Meeting STEROIDS and NERVOUS SYSTEM

Since 2001, this meeting represented an important event for basic and clinical researchers working on this emerging scientific topic. We will address state-of-the-art approaches in the field of steroids and nervous system, including behavior, epigenetics, genomic and non-genomic actions, the vitamin D, neurodegenerative and psychiatric disorders, and the interference among endocrine disruptors and steroid signaling.


Atassia: scoperto il difetto cellulare responsabile di una rara malattia neurologica

Un malfunzionamento dei mitocondri, le centrali energetiche delle cellule, causa lo sviluppo della SCA28, una forma ereditaria di atassia. Dopo 10 anni di studi e grazie al sostegno di Fondazione Telethon, la scoperta del team di ricerca guidato dai proff. Alfredo Brusco e Filippo Tempia dell’Università di Torino e NICO. Lo studio pubblicato sulla prestigiosa rivista Neurobiology of Disease.

4 dicembre 2018